

Initial Results from DS1: IPS Diagnostics Sensors (IDS)

David E. Brinza, <u>et al</u>
Jet Propulsion Laboratory
California Institute of Technology
david.e.brinza@jpl.nasa.gov
(818)354-6836

NMP/DS1 Technology Validation Symposium Pasadena, California February 8-9, 2000

Goal for IDS

- Understand the local environment on a spacecraft utilizing an Ion Propulsion Subsystem (IPS)
 - What is the nature of the local plasma environment?
 - What is the IPS contamination environment?
 - Are there EMI/EMC concerns?
 - Are IPS DC-magnetic fields compatible with science measurement requirements?

IDS Approach

- Conduct a balanced investigative effort that includes the following
 - Flight measurements with integrated sensor package
 - Ground laboratory measurements for correlation
 - Models based on physical principles and mechanisms
- Provide the user community with results and models for designing future IPS science missions

IDS Team Members

JPL

- FMP: M. Henry, A. Mactutis, K. McCarty, J. Rademacher,
 T. vanZandt, K. Leschly, B. T. Tsurutani
- Modeling: J. J. Wang

Technical University of Braunschweig

- FGM: G. Musmann, I. Richter, C. Othmer, K-H. Glassmeier

TRW

- PWS: S. Moses, R. Johnson

Maxwell Technologies

Modeling: I. Katz, V. Davis, B. Gardner

Physical Sciences, Inc.

DSEU (SAMMES heritage: BMDO) and Calorimeters: E. Lund,
 P. Joshi, M. Hinds, B. D. Green

IDS Flight Hardware

IDS is a compact, highly-integrated sensor suite

- Mass: 8 kg

Power: 21W , 7W (standby)

Spacecraft Interfaces:

28 VDC (±6 VDC), MIL-STD-1553B

IDS samples continuously

- RSU sensors at 2 second intervals
- FMP scans at 16 second intervals
- Waveform transient recording
 - PWA, SC at 20 kHz, 1 second
 - FGMs at 20 Hz, 55 seconds

Remote Sensors Unit (RSU):

Plasma: 2 Langmuir Probes(LPs), Retarding Potential Analyzer (RPA)

Contamination: 2 Quartz Crystal Microbalances (QCMs), 2 Calorimeters (CALs)

<u>Diagnostic Sensors Electronics Unit/Fields Measurement Processor (DSEU/FMP):</u>

Electrostatic Fields: 2-m dipole Plasma Wave Antenna (PWA) with pre-amplifier

Electromagnetic Waves: 2 Search Coil Magnetometers (SCMs); 1 failed before launch

DC Magnetic Fields: 2 ea. 3-axis Flux-Gate Magnetometers (FGMs)

IDS Sensor Performance

- IDS sensors were calibrated over the operating temperature range (-25°C to +55°C)
- Measurement capabilities summarized below

Sensor	Measurement	Range	Resolution
QCMs	Mass/area	0 to 500 ^μ g/cm ²	0.01 ^µ g/cm ²
CALs	Solar Absorptance (α)	$\alpha = 0.08$ (BOL) to 0.99	$\Delta \alpha = 0.01$
	Hemi. Emittance ($^{\epsilon}$)	$\varepsilon = 0.05 \text{ to } 0.85 \text{ (BOL)}$	$\Delta \epsilon = 0.01$
LPs	Probe Current	I =-0.4 to 40 mA	1%
	Probe Voltage	V = -11 to +11 VDC	0.1V
RPA	Current (Gain Select)	$I = 0.01, 1, 10, 100 \mu A$	1%
	Grid Bias Voltage	V = 0 to +100 VDC	0.4V
PWA	E-field (Adjust. Gain)	50 to 160 dB ^μ V/m	± 3 dB ^μ V/m
	24 Freq. Channels *	10 Hz to 30 MHz (4/decade)*	± 40% (-3dB)**
SCM	B-field (Adjust. Gain)	80 to 160 dBpT	± 3 dBpT
	16 Freq. Channels *	10 Hz to 100 kHz (4/decade)*	± 40% (-3dB)**
FGMs	Magnetic Field Vector **	±25,000 nT	0.5 nT

^{*} Typical band separation

^{**} Typical Bandwidth

IDS Configuration on DS1

- DSEU in shade
- PWA/boom assembly exposed to the Sun
- RSU sensors 45° from nom. sun vector
- Direct line-of-sight to IPS grid for lower pair of contamination monitors (CMs)
- Upper CM pair is shadowed from IPS

IPS Operation and Charge Exchange Xenon lons

- IPS produces beam and cold, dense plasma flow
 - IPS ionizes 80% to 90% of xenon in discharge chamber
 - Fast beam ion strips electron from slow thermal xenon atom
 Xe⁺_{beam} + Xe⁰_{thermal} → Xe⁰_{beam} + Xe⁺_{CEX}
 - "Charge-exchange xenon" (CEX) ions driven by local E-fields

CEX ions affect these environmental factors

- DS1 chassis potential
- IPS contamination
- Plasma wave noise

IPS Current Balance on DS1

- Current balance determines the net charge on DS1
- Net charge determines the DS1 chassis potential with respect to solar wind "ground"
- Key contributors to current balance on DS1 are:
 - IPS ion beam
 - IPS neutralizer
 - DS1 spacecraft chassis (IPS thruster mask ring)
 - IDS Langmuir Probes with conductive black Kapton MLI on RSU

IPS Plasma Effects

- IPS CEX plasma current collection drives the DS1 chassis from -6 to -10 V relative to space "ground"
 - Current collection affected by plasma density (10¹² m⁻³)
 and electron temperature (1.2 to 2.0 eV)
 - CEX ions from IPS plume "orbit" DS1
- Significant CEX ion flux detected by PEPE during IPS operations
- Solar wind proton measurements by PEPE essentially unaffected by IPS operations
 - Effects on solar wind electrons not quantified

Contamination from IPS

- IPS wear-out mechanism is grid erosion
 - CEX ions accelerated into outer grid (-150 to -250V)
 - Grid material (molybdenum) is sputtered by CEX ions
 - Sputtered material can collect on nearby surfaces
 - Ionization of Mo atoms in plume leads to non-line-of-sight transport and deposition
- RSU configuration on DS1 yields two distinct contamination monitor environments:
 - Shadowed region, shielded by spacecraft structure
 - Direct line-of-sight (LOS) to
 IPS thruster grid

IDS Contamination Measurements

Mo deposition readily detected by QCMs

- Line-of-sight deposition shown in figure to left is >5x shadowed sensor
- Sun-orientation effect on deposition for ML83A/B (DOY 98-335 to 98-344)
- Mo deposition rate vs IPS Mission Level (ML)
 - Correlates with current collected by outer grid
 - Highest IPS levels only at beginning of mission
 - Ground test (LDT) result is for maximum IPS ML

IPS Contamination Effects

- Line-of-sight deposition rate correlates with long-term ground test experience
 - 25 nm Mo accumulation after 3500 hours IPS operation
 - Expect highest grid erosion early in operating life
 - Extrapolating DS1 rate to ground results is difficult
 - Surface thermo-optical properties changed rapidly for line-of-sight: $\Delta(\alpha/\epsilon) \sim 0.3$ in several days at ML83
- Non-line-of-sight deposition effects minor
 - 2.5 nm Mo accumulation after one year
 - Chamber effects invalidate ground correlation
 - Effect on SCARLET arrays is immeasurably small due to geometric effect (ions are likely to be repelled by positive array voltage)

IPS EMI/EMC

- Hollow-cathode discharge plasma sources produce substantial electrostatic noise
 - Electron density fluctuates with discharge instabilities
 - CEX plasma serves as conductive medium for noise
- IPS produces momentary arcs during ignition and "recycle" events
 - lonization arcs between grids causes IPS to cycle beam power supplies
- Plasma plume and beam extend over large distances (~km) from IPS
 - Potential for interference with RF telecommunications link

IDS Plasma Wave Measurements

Plasma Waves

- <120 dBμV maximum</p>
- IPS ignition or recycles produce peak amplitude signals comparable to hydrazine thruster firings (<140 dBµV/m)

• EMI (AC B-field)

- IPS produces EM noise (<140 dBpT @ 2 kHz)
- lon engine gimbal motors for TVC produce similar EMI levels at 100 Hz
- IPS has <u>no impact</u> on telecommunications link

IPS DC Magnetic Field

Sm₂Co₁₇ magnet rings within IPS thruster

- "Ring-cusp" geometry to improve IPS xenon ionization efficiency
- External fields ~10,000 nT at 1 meter distance
- Temperature-dependence characterized in flight

Magnetic field stability and science measurements

- Temperature-corrected DC fields stable within 5 nT after 1 year operation (< 0.1% change since launch)
- No long-term degradation trend for magnetic fields obvious
- Short-term magnetic field stability allows measurement of fluctuations (> 1 nT) of external B-fields

IDS Conclusions

IPS local environment well-characterized

- CEX plasma affects DS1 chassis potential
 - CEX ions surround DS1, substantial ion flux for particle spectrometers, solar wind protons unaffected
- Local line-of-sight contamination rates are substantial
 - Non-line-of-sight contamination rates are significantly lower
- Plasma waves are produced by IPS
 - Peak amplitudes are equivalent to other sources on DS1 (hydrazine thruster firings, IPS gimbal motor operations)

Further investigations in progress

- Effects of sun-orientation on chassis potential
- Long-term contamination rates vs IPS ML
- Plasma wave noise dependence on IPS operating conditions (Why is ML90 much quieter than ML83?)